The Baker Hughes RockView™ Thru service provides lithology and mineralogy of the formation by acquiring and processing high-resolution gamma ray spectroscopy data through casing, helping to resolve the ambiguities of traditional petrophysical evaluation models. Using empirically developed algorithms to eliminate attenuation and contribution factors for the cement and casing, and a unique expert system for mineral quantification, the RockView Thru service opens up new analysis approaches that can lead to optimal reservoir characterization.

Reduce reservoir uncertainty
The RockView Thru service utilizes geochemical data acquired with the Baker Hughes Spectralog™ and the Formation Lithology eXplorer™ (FLeX) instruments, combined with characterization algorithms and a mineralogy processing system to deliver in-situ mineralogical characterization of the conventional and unconventional formation through casing. It gives an opportunity to reduce the uncertainties in petrophysical model calculations, especially when the reservoir heterogeneity increases and lithology and mineralogy data is not available from an openhole logging suite.

Identify bypassed zones
Historically, shale zones have been bypassed due to their lack of economically extractable hydrocarbons. The direct measurement of carbon with the RockView Thru service in these shale zones enables the quantification of the total organic carbon (TOC) or kerogen present in the reservoir, which indicates the amount of hydrocarbons in conventional reservoirs or total gas-in-place (GIP) in unconventional reservoirs.

Applications
- Cased wells with inner diameter (ID) of 6-in. (152mm) or greater
- Wells with unidentified lithology, mineralogy, and TOC
- Wells where openhole logging is not practical
- Unconventional reservoirs that require frac placement optimization
- Conventional reservoirs requiring porosity analysis improvement

Features and benefits
- Cased-hole logging
 - Reduces deployment risk
- Eliminates deployment of chemically radioactive sources
 - Reduces health, safety, and environment (HSE) risks
- Direct measurement of carbon
 - Determines TOC content of the formation
 - Identifies heavy oil and bitumen
- Enhances mineralogical identification and quantification
 - Optimizes hydraulic frac stage placement
 - Improves completion and/or stimulation design
 - Improves petrophysical analysis
Optimize frac placement

The variations in mineral composition and TOC make some intervals, known as the “sweet spots,” preferable for hydraulic fracture stimulation. Fracture placement can be optimized by combining the lithology, mineralogy, and TOC of the formation identified by the RockView Thru service with the Baker Hughes XMAC™ F1 acoustic service, which can determine the dynamic and static geomechanical properties of the formation.

If the reservoir is being stimulated for secondary or tertiary recovery, knowledge of the presence of certain minerals can also improve the design of the completion or stimulation program.

For more information on how the RockView Thru service can optimize reservoir characterization, contact your Baker Hughes representative today or visit bakerhughes.com/RockViewThru.

Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length*</td>
<td>22.9 ft (7m)</td>
</tr>
<tr>
<td>Minimum hole diameter</td>
<td>6 in. (15.2 cm)</td>
</tr>
<tr>
<td>Maximum hole diameter</td>
<td>9½ in. (24.4 cm)</td>
</tr>
<tr>
<td>Maximum tool diameter</td>
<td>4.87 in. (12.4 cm)</td>
</tr>
<tr>
<td>Recommended logging speed</td>
<td>10 ft/min (3.1 m/min)</td>
</tr>
<tr>
<td>Maximum logging speed</td>
<td>30 ft/min (9.1 m/min)</td>
</tr>
<tr>
<td>Maximum pressure</td>
<td>20,000 psi (1379 bar)</td>
</tr>
<tr>
<td>Maximum temperature</td>
<td>350° F (176°C)</td>
</tr>
<tr>
<td>Elements identified</td>
<td>K, U, Th, Al, C, Ca, Cl, Gd, H, Fe, Si, S, Ti</td>
</tr>
</tbody>
</table>

*Combined length of FLeX and Digital Spectalog instruments

Disclaimer of Liability: This information is provided for general information purposes only and is believed to be accurate as of the date hereof. However, Baker Hughes Incorporated and its affiliates do not make any warranties or representations of any kind regarding the information and disclaim all express and implied warranties or representations to the fullest extent permissible by law, including those of merchantability, fitness for a particular purpose or use, title, non-infringement, accuracy, completeness or usefulness of the information provided herein. All information is furnished “as is” and without any license to distribute. The user agrees to assume all liabilities related to the use or reliance on such information. BAKER HUGHES INCORPORATED AND ITS AFFILIATES SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, PUNITIVE, EXEMPLARY OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR FROM USE OF OR RELIANCE ON THIS INFORMATION. © 2014 Baker Hughes Incorporated. All rights reserved.